7 research outputs found

    Isolation of two insecticidal toxins from venom of the Australian theraphosid spider Coremiocnemis tropix

    Full text link
    © 2016 Elsevier Ltd Sheep flystrike is caused by parasitic flies laying eggs on soiled wool or open wounds, after which the hatched maggots feed on the sheep flesh and often cause large lesions. It is a significant economic problem for the livestock industry as infestations are difficult to control due to ongoing cycles of larval development into flies followed by further egg laying. We therefore screened venom fractions from the Australian theraphosid spider Coremiocnemis tropix to identify toxins active against the sheep blowfly Lucilia cuprina, which is the primary cause of flystrike in Australia. This screen led to isolation of two insecticidal peptides, Ct1a and Ct1b, that are lethal to blowflies within 24 h of injection. The primary structure of these peptides was determined using a combination of Edman degradation and sequencing of a C. tropix venom-gland transcriptome. Ct1a and Ct1b contain 39 and 38 amino acid residues, respectively, including six cysteine residues that form three disulfide bonds. Recombinant production in bacteria (Escherichia coli) resulted in low yields of Ct1a whereas solid-phase peptide synthesis using native chemical ligation produced sufficient quantities of Ct1a for functional analyses. Synthetic Ct1a had no effect on voltage-gated sodium channels from the American cockroach Periplanata americana or the German cockroach Blattella germanica, but it was lethal to sheep blowflies with an LD50 of 1687 pmol/g

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research

    Insect-active toxins with promiscuous pharmacology from the African theraphosid spider Monocentropus balfouri

    Full text link
    © 2017 by the authors. Licensee MDPI, Basel, Switzerland. Many chemical insecticides are becoming less efficacious due to rising resistance in pest species, which has created much interest in the development of new, eco-friendly bioinsecticides. Since insects are the primary prey of most spiders, their venoms are a rich source of insect-active peptides that can be used as leads for new bioinsecticides or as tools to study molecular receptors that are insecticidal targets. In the present study, we isolated two insecticidal peptides, µ/ω-TRTX-Mb1a and -Mb1b, from venom of the African tarantula Monocentropus balfouri. Recombinant µ/ω-TRTX-Mb1a and -Mb1b paralyzed both Lucilia cuprina (Australian sheep blowfly) and Musca domestica (housefly), but neither peptide affected larvae of Helicoverpa armigera (cotton bollworms). Both peptides inhibited currents mediated by voltage-gated sodium (NaV) and calcium channels in Periplaneta americana (American cockroach) dorsal unpaired median neurons, and they also inhibited the cloned Blattella germanica (German cockroach) NaV channel (BgNaV1). An additional effect seen only with Mb1a on BgNaV1 was a delay in fast inactivation. Comparison of the NaV channel sequences of the tested insect species revealed that variations in the S1–S2 loops in the voltage sensor domains might underlie the differences in activity between different phyla

    Sex steroid binding proteins in the plasma of hatchling Chelonia mydas

    No full text
    Sex steroid binding proteins were identified in hatchling female and male Chelonia mydas by dialysis and steady-state gel electrophoresis when examined at 4 degrees C. A testosterone binding protein with high binding affinity (K (a) = 0.98 +/- 0.5 x 10(8) M(-1)) and low to moderate binding capacity (B (max) = 7.58 +/- 4.2 x 10(-5) M) was observed in male hatchlings. An oestradiol binding protein with high affinity (K (a) = 0.35 +/- 1.8 x 10(8) M(-1)) and low to moderate binding capacity (B (max) = 0.16 +/- 0.5 x 10(-4) M) was identified in female hatchlings. This study confirmed that sex steroid binding proteins (SSBPs) become inactivate in both sexes at 36 degrees C, the maximum body temperature of sea turtle hatchlings at emergence. The inactivation of SSBPs at this temperature indicates that sex steroid hormones circulate freely in the body of the green turtles and are biologically available in the blood plasma. This observation is consistent with female and male hatchling C. mydas having different physiological (hormonal) and developmental requirements around the time of emergence. Moreover, concurrently conducted competition studies showed that sex steroids including testosterone and oestradiol do compete for binding sites in both male and female C. mydas hatchling plasma. Competition also occurred between testosterone and dihydrotestosterone for binding sites in the male C. mydas plasma. However, competition studies in the plasma of female hatchling C. mydas demonstrate that oestrone does not compete with oestradiol for binding sites
    corecore